

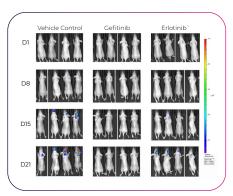
ORTHOTOPIC AND METASTATIC BRAIN TUMOR MODELS

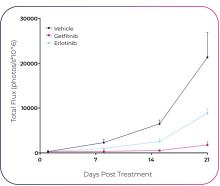
Brain tumors are associated with significant morbidity and mortality and are often difficult to treat due to:

- · Blood-brain barrier limits the entry of substances, including therapeutic agents
- Tumor location and invasiveness make complete surgical removal challenging
- · Brain tumors can be genetically diverse, which can affect treatment response and contribute to resistance to therapies
- · Some brain tumors, particularly glioblastomas, have a high resistance to standard treatments like radiation and chemotherapy
- The brain is a complex and delicate organ, and its treatment carries the risk of causing neurological damage

Preclinical brain tumor models have played a fundamental role in understanding tumor biology and developing anti-tumor strategies.

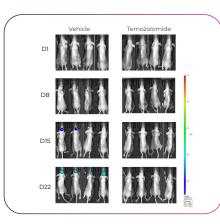
Preclinical In Vivo Models

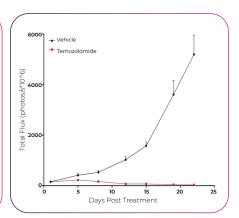

Tumor Type	Inoculation Route	Pros	Cons	Applications
Primary	• Intracranial	Clinically relevant location Clinically relevant microenvironment	Surgical procedure Higher cost	Targeted therapyIO therapyCombo therapy
	Subcutaneous	Lower cost	Less relevant to clinical setting	Targeted therapy
Metastatic CDX PDX Syngeneic	• Intracarotid	Clinically relevantIntact BBB	Technically challenging surgical procedure	Targeted therapy IO therapy Combo therapy
	• Intracranial	Clinically relevantMostly Intact BBB	Surgical procedure	
	Spontaneous met	Clinically relevant Intact BBB	Not all models will develop brain met Technically challenging Require large N numbers	


Validated Models

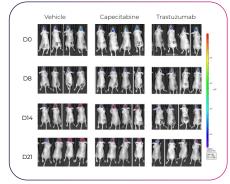
Intracranial Models		Intracarotid Models	
A375-LucNCI-H1299-LucH1975-LucH358-Luc	PC-9-LucxBT474-LucX2MDA-MB-468-lucXMDA-MB-231-luc	A375-LucPC-9-LucxBT474-LucNCI-H1975-Luc	

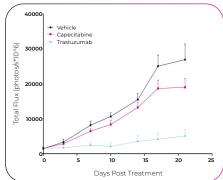
PC-9-Luc Human Lung Cancer Intracranial Metastatic Model


- PC-9 is a lung adenocarcinoma cell line with a deletion in exon 19 of the EGFR gene that exhibits high sensitivity to TKIs.
- Brain tumors established by intracranial implantation of cells into nude mice.
- Treatment: 6.25mg/kg Gef q.d. and 15mg/kg Erl showed statistically significantly reduced tumor growth (n=8, p<0.0001).



U87-MG-Luc2 Intracranial Orthotopic Model


- Human glioblastoma cell line U-87MG was transduced to express firefly luciferase (100% STR profile match). Brain tumors established by intracranial cell implantation into nude mice.
- In-life growth assessed by bioluminescent imaging (BLI) using IVIS (PerkinElmer, US); mice were randomized to treatment groups based on their tumor-associated bioluminescence (TABL).
- Treatment: 45mg/kg TMZ q.d. showed statistically significantly reduced tumor growth (n=8, p<0.0001).



xBT-474-Luc Intracranial Metastases Model

- Human breast ductal carcinoma cell line BT474 sourced from ATCC, engineered to express firefly luciferase (BT474-luc, 100% STR profile match)
- Brain tumors established by intracranial implantation
- In-life growth and terminal ex vivo tumor burden assessed by bioluminescent imaging (BLI)

Summary

The utilization of *in vivo* orthotopic and metastatic models, including the intracranial and intracarotid models, represents a critical approach in advancing our knowledge of tumour biology and facilitating the development of novel therapeutic strategies for combating brain cancer.

The intracarotid model, in particular, offers a highly relevant and clinically translatable framework for studying brain metastases.

Learn more at chempartner.com/services/biology-pharmacology/oncology/