

ORTHOTOPIC AND METASTATIC BRAIN TUMOR MODELS

Brain tumors are associated with significant morbidity and mortality and are often difficult to treat due to:

- Blood-brain barrier limits the entry of substances, including therapeutic agents
- Tumor location and invasiveness make complete surgical removal challenging
- Brain tumors can be genetically diverse, which can affect treatment response and contribute to resistance to therapies
- Some brain tumors, particularly glioblastomas, have a high resistance to standard treatments like radiation and chemotherapy
- The brain is a complex and delicate organ, and its treatment carries the risk of causing neurological damage

Preclinical brain tumor models have played a fundamental role in understanding tumor biology and developing anti-tumor strategies.

Tumor Type	Inoculation Route	Pros	Cons	Applications
Primary • CDX • PDX • Syngeneic	Intracranial	 Clinically relevant location Clinically relevant microenvironment 	Surgical procedureHigher cost	Targeted therapyIO therapyCombo therapy
	Subcutaneous	Lower cost	 Less relevant to clinical setting 	Targeted therapy
Metastatic • CDX • PDX • Syngeneic	Intracarotid	Clinically relevantIntact BBB	 Technically challenging surgical procedure 	 Targeted therapy IO therapy Combo therapy
	 Intracranial 	Clinically relevantMostly Intact BBB	Surgical procedure	
	Spontaneous met	Clinically relevantIntact BBB	 Not all models will develop brain met Technically challenging Require large N numbers 	

Preclinical In Vivo Models

Validated Models

Intracranial Models		Intracarotid Models	
 A375-Luc NCI-H1299-Luc H1975-Luc H358-Luc 	 PC-9-Luc xBT474-Luc X2MDA-MB-468-luc XMDA-MB-231-luc 	 A375-Luc PC-9-Luc xBT474-Luc NCI-H1975-Luc 	

PC-9-Luc Human Lung Cancer Intracranial Metastatic Model

- PC-9 is a lung adenocarcinoma cell line with a deletion in exon 19 of the EGFR gene that exhibits high sensitivity to TKIs.
- Brain tumors established by intracranial implantation of cells into nude mice.
- Treatment: 6.25mg/kg Gef q.d. and 15mg/kg Erl showed statistically significantly reduced tumor growth (n=8, p<0.0001).

U87-MG-Luc2 Intracranial Orthotopic Model

- Human glioblastoma cell line U-87MG was transduced to express firefly luciferase (100% STR profile match). Brain tumors established by intracranial cell implantation into nude mice.
- In-life growth assessed by bioluminescent imaging (BLI) using IVIS (PerkinElmer, US); mice were randomized to treatment groups based on their tumor-associated bioluminescence (TABL).
- Treatment: 45mg/kg TMZ q.d. showed statistically significantly reduced tumor growth (n=8, p<0.0001).

xBT-474-Luc Intracranial Metastases Model

- Human breast ductal carcinoma cell line BT474 sourced from ATCC, engineered to express firefly luciferase (BT474-luc, 100% STR profile match)
- Brain tumors established by intracranial implantation
- In-life growth and terminal ex vivo tumor burden assessed by bioluminescent imaging (BLI)

Summary

The utilization of *in vivo* orthotopic and metastatic models, including the intracranial and intracarotid models, represents a critical approach in advancing our knowledge of tumour biology and facilitating the development of novel therapeutic strategies for combating brain cancer.

The intracarotid model, in particular, offers a highly relevant and clinically translatable framework for studying brain metastases.

LEARN MORE AT CHEMPARTNER.COM/SERVICES/BIOLOGY-PHARMACOLOGY/ONCOLOGY/