

DIET-INDUCED OBESITY (DIO) MOUSE MODEL

Obesity is a chronic, complex disease characterized by excessive fat deposits. In most countries, obesity is a major public health issue with global costs of obesity predicted to reach US\$3 trillion per year if no intervention.

- · Obesity is a result of an imbalance between energy intake (diet) and energy expenditure (physical activity).
- Can lead to several comorbidities and health issues, including:
 - Heart disease
 - Type 2 diabetes
 - Metabolic syndrome
 - Bone health
 - Reproduction
 - Predisposition to the development of various cancers
- Treatment should initially focus on dietary and lifestyle changes. If these fail, then the following options can be considered:
 - Weight-loss medications
 - Surgery

ChemPartner offers a validated DIO mouse model for your metabolic research, providing a robust platform for assessment of therapies targeting obesity.

DIET-INDUCED OBESITY PRECLINICAL IN VIVO MOUSE MODEL

MICE

Male C57BL/6N aged 7 weeks on arrival

MODEL

• Obesity-induced via feeding in weeks 0-17 with a high fat diet

SoC VALIDATION

MAJOR READOUTS

- Body weight
- Food intake
- Oral glucose tolerance test (OGTT)
- Total cholesterol (TC), HDL-c, and LDL-c
- Plasma insulin
- Adipose weight

DIET-INDUCED OBESITY MOUSE MODEL

CLINICALLY RELEVANT

Animals are:

- ✓ Hyperinsulinemic
- ✓ Hyperlipidemic
- ✓ Hypercholesterolemic
- Glucose intolerant

SEMAGLUTIDE VALIDATION IN DIO MICE

1.5

1.0

0.5

0.0

LDL-c (mmol/L)

- Statistically significant reduction in body weight (p<0.0001) and food intake (p<0.0001) following Semaglutide administration
- Statistically significant decrease following Semaglutide administration in:
 - Inguinal fat (p=0.0177)
 - Perirenal fat (p=0.0205)
 - Mesentery fat (p=0.0160)
 - Brown fat (p=0.0047)
- Mice treated with Semaglutide had improved glucose tolerance (p<0.0001) and decreased plasma insulin levels (p=0.0175)

SUMMARY

The utilization of cost-effective, clinically relevant *in vivo* models for studying metabolic disease is often a pre-requisite prior to new drugs entering human clinical trials. The DIO mouse model is a useful pre-clinical *in vivo* tool for evaluating anti-obesity therapies; mimicking many of the comorbidities and complications of obesity.

LEARN MORE AT CHEMPARTNER.COM/SERVICES/BIOLOGY-PHARMACOLOGY