Single Cell Cloning Antibody Generation
with the Beacon® Optofluidic System

Rapid Antibody Discovery to Accelerate Timelines with Single Cell Cloning
Several methodologies have been developed for generating monoclonal antibodies with hybridoma being the most widely used method. However, despite being an important and reliable antibody discovery engine this process has notable limitations, such as being time-consuming, laborious, and low-efficiency.
Single B cell cloning technology is an emerging microsystem-based screening method that is increasingly being adopted throughout the field of antibody discovery. This strategy of single B cell cloning by either cell sorting or limiting dilution dramatically overcame many limitations of conventional methods.
The nanofluidic optoelectronic antibody screening technique, the Beacon® platform, integrates individual cell trafficking, imaging, and culturing on a chip smaller than a business card. It enables us to directly screen single antibody-secreting plasma cells against multiple assays within hours of isolation. Additionally, the probability of identifying higher numbers of quality antibody leads against difficult targets is significantly improved with Beacon versus traditional hybridoma.
Accelerate Timelines
- Identify functional leads in a single day
- Multi-parameter phenotyping with high-throughput
- Thousands of individual cells interrogated in parallel
- 4 hrs to o/n from load to exporting hits
Functional Advantages
- Perform assays at any time, as often as you need
- Track phenotype and genotype of single cells or clones
- Automate and scale workflows far beyond manual analysis
- Look for different functional parameters on day one
Why choose ChemPartner for antibody discovery?
- Extensive experience with Beacon screening strategy design as one of the first CRO adopters of the technology
- CRO/CDMO teams with a fully-integrated infrastructure for antibody discovery and production as well as full service in vitro and in vivo pharmacology and DMPK capabilities
- Collaborative Bay Area partnership with Berkeley Lights (Beacon platform) and our South San Francisco research team
- Established workflows that enable antibody generation from multiple animal species
- Exploring single-cell cloning approach in various applications and therapeutic areas
Want to discuss your antibody discovery project?
Our team is ready -- the more challenging the better!
Read the Blog

Employee Spotlight: Amy (Zichun) Wang, PhD
Employee Spotlight Our employee spotlight series celebrates the accomplishments and expertise of our valued scientists and staff. Amy (Zichun) Wang, PhD Amy (Zichun) Wang, PhD Senior Director of Cell Biology, Biology and Pharmacology Department Q&A with Amy What...

Employee Spotlight: Yan Wang, PhD
Employee Spotlight Our employee spotlight series celebrates the accomplishments and expertise of our valued scientists and staff. Yan Wang, PhD Yan Wang, PhD Director, Peptide Chemistry Q&A with Yan What is your favorite part of your role here as a Director of...

Employee Spotlight: Manny Ventura, PhD
Employee Spotlight Our employee spotlight series celebrates the accomplishments and expertise of our valued scientists and staff. Manny Ventura, PhD Manny Ventura, PhD Senior Director and Site Head at ChemPartner US Q&A with Manny What is your favorite part of...

Advantages of Integrated Drug Development Models
The race to first-in-human clinical trials has become more critical than ever for drug developers. The FDA has even developed 4 major tracks to speed up the process and make drugs available to patients as fast as possible: Fast Track: Facilitates drug development and...

Exciting Upcoming Events: 2023
Throughout the year, ChemPartner attends events and conferences around the world not only to stay up to date with the latest trends but to share our expertise with the industry. Mark your calendar with this year's top biopharma conferences and events, and be sure to...

Employee Spotlight: Neha Yevalekar
Employee Spotlight Our employee spotlight series celebrates the accomplishments and expertise of our valued scientists and staff. Neha Yevalakar Neha Yevalekar Senior Scientist at ChemPartner Q&A with Neha What is your favorite part of your role here as a Senior...

Benefits of Working with a CDMO
The combined small and large molecule Contract Development and Manufacturing Organization (CDMO) market was valued at $52.8 billion dollars in 2021 with annual growth rates of 6.5% and 8.6% (respectively) from 2022 to 2030. So, why are more and more biotech and...

Antibody Generation: Single B Cell Cloning vs. Hybridoma
PD-L1 is a key inhibitor of T cell activation that is often over-expressed in cancer to escape immune surveillance and promote tumor progression. Blocking antibodies against PD-L1 or its receptor, PD-1, have shown significant clinical benefit in some patients with...
View the Data
Poster
Accelerated Discovery of Unique Anti-PD-L1 Antibodies from Spleen Versus Bone Marrow of Immunized Mice by Single Plasma B cell Cloning on the Beacon® Platform
Case Study
Accelerated Antibody Discovery of High-quality Anti-PDL1 Antibodies Using the Beacon® System
Technical Note
Rapid Antibody Discovery Through B-cell Cloning on the Beacon Platform
Single Cell cloning approach and its advancement for antibody discovery
Watch a Webinar
Rapid Discovery of a Diverse Panel of Antibodies Against Membrane Targets Using the Beacon System
Presented by ChemPartner and Berkeley Lights at the Antibody Engineering & Therapeutics Digital Week
Rapid Discovery of Potent anti-PD-L1 Antibodies Enabled by Single Plasma B Cell Cloning on the Beacon Platform and Epitope Binning with the Carterra LSA
Presented by ChemPartner, Berkeley Lights, and Carterra
Select Publications
Rapid discovery of CD-28-specific antibodies from rabbits through single B-cell cloning on the Beacon Platform
ABSTRACT
CD28 is a costimulatory receptor for T-cell activation, and CD28 binding antibodies are in clinical development to block or promote T-cell activation[1,2] . CD28-specific binding domains are also used in bi- or tri-specific antibody formats to generate T-cell engaging antibodies [3] . We set out to generate CD28-specific mAbs from rabbits using a single B-cell cloning workflow on the Beacon system.
The Beacon system enables rapid antibody discovery using a function-first approach. Antibody-secreting cells (ASCs) are isolated from immunized animals and placed individually into nanowells (pens) of a Beacon chip. Due to the small size of the pens, the secreted antibody concentration reaches µg/ml levels within minutes, and the functional properties of the antibodies can be tested in sequential or multiplexed bead-based assays with a fluorescent readout. Typical assay duration is 30-60 minutes. Rabbits were immunized with CHOK1 cells stably transfected to carry human CD28 (hCD28) on their surface. Serum samples showed clear, yet low specific titers for hCD28.
At the end of the immunization schedule, memory B-cells were isolated from blood using Ficoll separation and magnetic sorting. B-cells were cultured in an activation media, and cells were analyzed after 4 and 5 days of activation. During the activation period, the average cell size increased and cells proliferated roughly 15-fold until day 5, with cell numbers unchanged after that. Flow cytometry showed a reduction of surface IgG and a clear increase of intracellular IgG during activation, consistent with a shift from Bcells to antibody secreting cells. On day 4 and 5, a total of 32,716 activated B-cells were screened on Beacon, first for overall IgG secretion and then for IgG specific for hCD28. 14,889 cells secreted IgG (76%), and 108 cells secreted IgG specific to hCD28 (0.43% of IgG secretors).
cDNA from identified hits was individually exported from the chip and submitted for VH/VL sequencing. Antibody discovery on the Beacon enabled rapid screening of a large number of ASCs and identification of antigen-specific antibodies within 4 days of obtaining PBMCs from immunized rabbits. cDNA generation and export happened on the day of the Beacon run, and cDNA amplification added another day to the workflow. The method was robust and substantially reduced the hands-on time for rabbit antibody discovery.
Accelerated Discovery of Unique Anti-PD-L1 Antibodies from Spleen Versus Bone Marrow of Immunized Mice by Single Plasma B Cell Cloning on the Beacon Platform
ABSTRACT
PD-L1 is a key inhibitor of T cell activation that is often over-expressed in cancer to escape immune surveillance and promote tumor progression. Blocking antibodies against PD-L1 or its receptor, PD-1, have shown significant clinical benefit in some patients with PD-L1 expressing tumors. Hence, there is great interest in generating therapeutic antibodies against these targets to counteract the immune suppression mechanism that tumors rely on for survival.
Most of the anti-PD-L1 therapies in the clinic have been generated by standard hybridoma technology but it remains to be determined whether superior antibodies with greater diversity, affinity, and/or functional activity could be generated using single B cell cloning. Using the Beacon® platform (Berkeley Lights, Inc., (BLI)), we have screened tens of thousands of primary single plasma B cells to identify unique antibodies against PD-L1. We have immunized Balb/c mice with recombinant Fc fusion of human PD-L1 extracellular domain (ECD) and isolated CD138+ plasma B cells from bone marrow and spleen from an 8 week immunization.
Plasma B cells from both spleen and bone marrow were penned as single cells onto OptoSelectTM chips for analysis. A series of assays were performed in tandem including bead-based binding/blocking assays, cell-based binding to CHOK1 cells engineered to overexpress human PD-L1, and cell-based blocking assays using PD-1. This series of assays on the Beacon enabled identification of roughly 300 antibodies binding to PD-L1, some of which blocked binding of PD-1 to PD-L1 on cells. Interestingly, a majority of PD-L1 specific antibodies were identified from plasma B cells isolated from bone marrow even though the yield of plasma B cells from bone marrow was less than 20% of what was obtained from the spleen. Single plasma B cells were exported by the Beacon platform for antibody sequence recovery.
After reverse-transcription, amplification, and single plasma B cell sequencing by NGS, we evaluated the sequence diversity of anti-PD-L1 antibody hits. Taken together, our results from plasma B cell cloning on the Beacon show that plasma B cells secreting functional antibody candidates can be identified within one week compared to 1-2 months for the standard hybridoma campaign, thus substantially accelerating the antibody discovery process.
In addition, this technology could enable rapid comparison of immunization strategies, mouse strains, and lymphoid organs from which to isolate B cells to maximize recovery of target specific functional antibodies representing the diversity of the immune repertoire.
Functional Evaluation of Unique Anti-PDL1 Antibodies Generated through Single Plasma Cell Cloning on the Beacon® Platform Versus Standard Hybridoma Approach
ABSTRACT
The monoclonal antibody (mAb) market keeps growing strongly with a CAGR of >14% and is expected to reach >$450 billion in 2028. One remaining challenge is the efficient discovery of mAbs with the desired properties, like high functional activity, high affinity, low immunogenicity, long halflife, and cross-reactivity to target homologues in other species to enable animal models. Conventional antibody discovery programs are typically based on the generation of many potential hits followed by tedious downselection of a few good leads.
Novel technologies like Berkeley Lights’ (BLI) single plasma cell cloning platform, Beacon®, promise to drastically simplify and shorten antibody discovery workflows by identifying a much reduced number of highly functional hits within a few hours of sacrificing the animal. This is achieved by placing thousands of individual plasma cells from the immunized animal into nano-wells called pens, and testing multiple properties of the secreted antibodies in a short time frame. In order to compare the functionality of the Beacon platform with a hybridoma approach we generated monoclonal antibodies against PDL1, a frequently used cancer target, using our Beacon single Plasma Cell cloning platform as well as hybridoma technology. PD-L1 is a key inhibitor of T cell activation that is often over-expressed in cancer to escape immune surveillance and promote tumor progression. Blocking antibodies against PD-L1 or its receptor, PD-1, have shown significant clinical benefit in some patients with PD-L1 expressing tumors.
Hence, there is great interest in generating therapeutic antibodies against these targets to counteract the immune suppression mechanism that tumors rely on for survival. Most of the anti-PD-L1 therapies in the clinic have been generated by standard hybridoma technology. We investigated whether superior antibodies with greater diversity, affinity, and/or functional activity could be generated using single B cell cloning (BCC) which could circumvent a labor-intensive and time-consuming process. Thus, we generated unique antibodies against PD-L1 via both methods.
A detailed functional analysis of the obtained antibodies showed that the single cell cloning process using the Beacon platform generated less total hits than hybridoma, however, the antibodies showed better functionality.
Case Study on the accelerated antibody discovery of high-quality anti-PDL1 antibodies using the Beacon® system
INTRODUCTION
Monoclonal antibodies (mAbs) against PDL-1 were rapidly developed by the ChemPartner Biologics group using Berkeley Lights’ Beacon® optofluidic single B-cell cloning technology. The high-throughput automation of the Beacon® system enabled us to identify PD-L1 blocking antibodies within a single day, significantly accelerating a process that would normally take 2–3 months using conventional methodologies such as hybridoma technology or synthetic display library.
Using the Beacon®, we screened tens of thousands of primary single plasma B cells to identify unique antibodies against PD-L1. A series of assays were used for direct screening on the Beacon®. These assays included bead-based binding/blocking assays, cell-based binding to CHOK1 cells overexpressing human PD-L1, and cell-based blocking assays using PD-1. Once positive hits were identified, single plasma B cells were exported by the Beacon for antibody sequence recovery. After single-cell reverse transcription, amplification, and sequencing by NGS, the sequence diversity of the anti-PD-L1 antibody hits was evaluated.
In addition, this technology can enable rapid comparison of target-specific repertoire diversity between different immunization strategies, mouse strains, and lymphoid organs. Through the rapid generation of diverse, high-affinity mAbs, clients can take advantage of this emerging technology to maximize their research success and advancement toward their commercial goals.
Rapid Antibody Discovery Through B-cell Cloning on the Beacon Platform
INTRODUCTION
Several methodologies have been developed for generating monoclonal antibodies. Hybridoma technology is the most widely used method for antibody generation. However, there are major disadvantages to this process, such as being time consuming, laborious and of low-efficiency. Phage display, another common method used for antibody discovery, can often provide limited and biased repertoires due to non-cognate VH/VL pairing. Both of these methods have notable limitations, despite being important and reliable antibody discovery engines.
Talk to a Scientist

Headquarters
1F & 3F, Block A
2829 JinKe Road
Zhangjiang Hi-Tech Park
PuDong New Area
Shanghai China, 201203
Contact Us
China: +86 21 5132 0088
US: +1 650 419 9974
Europe: +45 4586 9000